New particle formation and growth
نویسندگان
چکیده
The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing D. L. Yue, M. Hu, R. Y. Zhang, Z. B. Wang, J. Zheng, Z. J. Wu, A. Wiedensohler, L. Y. He, X. F. Huang, and T. Zhu State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China Department of Atmospheric Science, Texas A&M University, College Station, 77843 Texas, USA Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany Shenzhen Graduate School of Peking University, 518055 Shenzhen, China Received: 15 December 2009 – Accepted: 18 January 2010 – Published: 3 February 2010 Correspondence to: M. Hu ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union.
منابع مشابه
Competitive particle growth at different conditions of oligo-micelle formation in hydro-alcoholic solution of anionic double-chain emulsifier via batch emulsion polymerization of vinyl chloride
The condition of oligo-micelle formation of sodium di-isodecyl sulfosuccinate (SDIDS) emulsifier in hydroalcoholic solutions is used to study particle formation of vinyl chloride emulsion polymerization in a batch reactor. The change on micellization behavior was investigated by critical micelle concentration (CMC) and zeta potential parameters. To detect the occurrence of secondary nucleation ...
متن کاملAn improved particle swarm optimization with a new swap operator for team formation problem
Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...
متن کاملSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملA New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms
Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable...
متن کاملA New Mixture of Nano-structure of Potassium-incorporated Hydroxyapatite/β-tricalcium Phosphate/calcium Pyrophosphate
The new triphasic potassium−substituted hydroxyapatite (KHAP), β−tricalcium phosphate (β−TCP), and calcium pyrophosphate (CPP) proportions using easy sol−gel method were synthesized. The prepared powders was characterized by X–ray diffraction (XRD), Fourier transform infrared (FTIR), Differential thermal behavior (DTA) analysis, Energy Dispersive X–ray Analysis (EDXA), and Brunauer–Emmett–Telle...
متن کاملPolluted dust promotes new particle formation and growth
Understanding new particle formation and their subsequent growth in the troposphere has a critical impact on our ability to predict atmospheric composition and global climate change. High pre-existing particle loadings have been thought to suppress the formation of new atmospheric aerosol particles due to high condensation and coagulation sinks. Here, based on field measurements at a mountain s...
متن کامل